Collaborative Filtering on Ordinal User Feedback

نویسندگان

  • Yehuda Koren
  • Joseph Sill
چکیده

We propose a collaborative filtering (CF) recommendation framework which is based on viewing user feedback on products as ordinal, rather than the more common numerical view. Such an ordinal view frequently provides a more natural reflection of the user intention when providing qualitative ratings, allowing users to have different internal scoring scales. Moreover, we can address scenarios where assigning numerical scores to different types of user feedback would not be easy. The framework can wrap most collaborative filtering algorithms, enabling algorithms previously designed for numerical values to handle ordinal values. We demonstrate our framework by wrapping a leading matrix factorization CF method. A cornerstone of our method is its ability to predict a full probability distribution of the expected item ratings, rather than only a single score for an item. One of the advantages this brings is a novel approach to estimating the confidence level in each individual prediction. Compared to previous approaches to confidence estimation, ours is more principled and empirically superior in its accuracy. We demonstrate the efficacy of the approach on two of the largest publicly available datasets: the Netflix data and the Yahoo! Music data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Cumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis

Ordinal data is omnipresent in almost all multiuser-generated feedback questionnaires, preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted Boltzmann machines (RBMs). In particular, we present the model architecture, learning and inference procedures for both vector-variate and matrix-variate ordinal data. We show that our model is able to capture latent o...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013